Is Base-Inhibited Vapor Phase Polymerized PEDOT an Electrocatalyst for the Hydrogen Evolution Reaction? Exploring Substrate Effects, Including Pt Contaminated Au

نویسندگان

  • Chaokang Gu
  • Brent C. Norris
  • Fu-Ren F. Fan
  • Christopher W. Bielawski
  • Allen J. Bard
چکیده

Studies of the hydrogen evolution reaction (HER) were carried out on base-inhibited vapor phase polymerized (BI-VPP) poly(3,4-ethylenedioxythiophene) (PEDOT)-poly(ethylene glycol) (PEG) thin films synthesized on several substrates, including gold, glassy carbon, and titanium, in an acidic electrolyte. The proton reduction overpotential became smaller and the current−potential (i-E) scans moved toward the thermodynamic potential with time. However, they did not move below the proton reduction potential of the substrate. Collectively, the results suggested to us that the polymer film was porous and that the porosity increased with time when the electrode was immersed in solution, with the hydrogen evolution catalysis taking place on the conducting substrate beneath the polymer rather than on our BI-VPP PEDOTPEG thin films. Comparison of the HER on gold substrates with different impurities was also studied and traces of Pt and Pd at the ppm level significantly improved the HER activity of Au.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Palladium as core and Platinum as shell for ORR

In this work, electrocatalyst with core-shell structure (Pd as core and Pt as shell on VulcanXC-72R) was synthesis. Not only this structure can reduce the amount of platinum but it also can increase the gas diffusion electrode (GDE) performance in cathode reaction (Oxygen Reduction Reaction or ORR) of polymer electrolyte membrane fuel cell (PEMFC). To this meaning, one series of electrocatalyst...

متن کامل

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells

In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...

متن کامل

Highly Efficient Electrochemical Hydrogen Evolution Reaction at Insulating Boron Nitride Nanosheet on Inert Gold Substrate

It is demonstrated that electrochemical hydrogen evolution reaction (HER) proceeds very efficiently at Au electrode, an inert substrate for HER, modified with BNNS, an insulator. This combination has been reported to be an efficient electrocatalyst for oxygen reduction reaction. Higher efficiency is achieved by using the size controlled BNNS (<1 μm) for the modification and the highest efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012